高校物理 波動 ~ 波の性質
波の伝わる速さ
$$
v = \frac{\Delta x}{\Delta t}
$$
v = \frac{\Delta x}{\Delta t}
$$
v = \frac{\Delta x}{\Delta t}
振動数 (frequency)
$$
F = \frac{1}{T}
$$
F = \frac{1}{T}
$$
F = \frac{1}{T}
波の伝わる速さ
\begin{eqnarray*}
v &=& \frac{\lambda}{T} \\
\\
v &=& f \lambda
\end{eqnarray*}
v &=& \frac{\lambda}{T} \\
\\
v &=& f \lambda
\end{eqnarray*}
v &=& \frac{\lambda}{T}
v &=& f \lambda
波の重ね合わせの原理
$$
y = y_1 + y_2
$$
y = y_1 + y_2
$$
y = y_1 + y_2
正弦波を表す式
$$
y = A \sin \frac{2 \pi}{T} \left( t – \frac{x}{v} \right) = A \sin 2 \pi \left( \frac{t}{T} – \frac{x}{\lambda} \right)
$$
y = A \sin \frac{2 \pi}{T} \left( t – \frac{x}{v} \right) = A \sin 2 \pi \left( \frac{t}{T} – \frac{x}{\lambda} \right)
$$
y = A \sin \frac{2 \pi}{T} \left( t – \frac{x}{v} \right) = A \sin 2 \pi \left( \frac{t}{T} – \frac{x}{\lambda} \right)
波の干渉条件
\begin{eqnarray*}
|L_1 – L_2| &=& m \lambda = \frac{\lambda}{2} \times 2m \ \text{(最も強め合う点)}\\
\\
|L_1 – L_2| &=& m \lambda + \frac{\lambda}{2} = \frac{\lambda}{2} \times (2m+1) \ \text{(最も弱め合う点)}
\end{eqnarray*}
|L_1 – L_2| &=& m \lambda = \frac{\lambda}{2} \times 2m \ \text{(最も強め合う点)}\\
\\
|L_1 – L_2| &=& m \lambda + \frac{\lambda}{2} = \frac{\lambda}{2} \times (2m+1) \ \text{(最も弱め合う点)}
\end{eqnarray*}
|L_1 – L_2| &=& m \lambda = \frac{\lambda}{2} \times 2m \ \text{(最も強め合う点)}
|L_1 – L_2| &=& m \lambda + \frac{\lambda}{2} = \frac{\lambda}{2} \times (2m+1) \ \text{(最も弱め合う点)}
反射の法則 (law of reflection)
入射角 $I$ (incident angle), 反射角 $j$ (reflection angle)
$$
i = j
$$
i = j
$$
i = j
屈折の法則 (law of refraction)
$$
\frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \frac{f \lambda _1}{f \lambda _2} = \frac{\lambda _1}{\lambda _2} = n_{12}
$$
\frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \frac{f \lambda _1}{f \lambda _2} = \frac{\lambda _1}{\lambda _2} = n_{12}
$$
\frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \frac{f \lambda _1}{f \lambda _2} = \frac{\lambda _1}{\lambda _2} = n_{12}
ディスカッション
コメント一覧
まだ、コメントがありません