高校物理 熱力学 ~ 気体分子の運動

気体の圧力 (gas pressure)

$$
p = \frac{F}{S}
$$
p = \frac{F}{S}

ボイル・シャルルの法則 (Boyle-Charles’s law)

\begin{eqnarray*}
\frac{pV}{T} = \text{const.} \\
\\
\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}
\end{eqnarray*}
\frac{pV}{T} = \text{const.}

\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}

理想気体の状態方程式 (equation of state of ideal gas)

$$
pV = nRT
$$
pV = nRT

気体の圧力 (gas pressure)

$$
P = \frac{N m \overline{v^2}}{3V}
$$
P = \frac{N m \overline{v^2}}{3V}

速さの2乗平均 (root mean square velocity)

\begin{eqnarray*}
\overline{v^2} &=& \frac{v_1^2 + v_2^2 + \cdots + v_N^2}{N} \\
\\
\overline{v_x^2} &=& \frac{v_{1x}^2 + v_{2x}^2 + \cdots + v_{Nx}^2}{N} \\
\\
v_i^2 &=& v_{ix}^2 + v_{iy}^2 + v_{iz}^2 \\
\\
\overline{v^2} &=& \frac{v_1^2 + v_2^2 + \cdots + v_N^2}{N} \\
\\
&=& \frac{1}{N}{(v_{1x}^2 + v_{2x}^2 + \cdots + v_{Nx}^2) + (v_{1y}^2 + v_{2y}^2 + \cdots + v_{Ny}^2) + (v_{1z}^2 + v_{2z}^2 + \cdots + v_{Nz}^2)} \\
\\
&=& \overline{v_x^2} + \overline{v_y^2} + \overline{v_z^2} \\
\\
&=& 3 \overline{v_x^2} \\
\\
\overline{v_x^2} &=& \frac{\overline{v^2}}{3}
\end{eqnarray*}
\overline{v^2} &=& \frac{v_1^2 + v_2^2 + \cdots + v_N^2}{N}

\overline{v_x^2} &=& \frac{v_{1x}^2 + v_{2x}^2 + \cdots + v_{Nx}^2}{N}

v_i^2 &=& v_{ix}^2 + v_{iy}^2 + v_{iz}^2

\overline{v^2} &=& \frac{v_1^2 + v_2^2 + \cdots + v_N^2}{N}

&=& \frac{1}{N}{(v_{1x}^2 + v_{2x}^2 + \cdots + v_{Nx}^2) + (v_{1y}^2 + v_{2y}^2 + \cdots + v_{Ny}^2) + (v_{1z}^2 + v_{2z}^2 + \cdots + v_{Nz}^2)}

&=& \overline{v_x^2} + \overline{v_y^2} + \overline{v_z^2}

&=& 3 \overline{v_x^2}

\overline{v_x^2} &=& \frac{\overline{v^2}}{3}

分子の運動エネルギー

\begin{eqnarray*}
\overline{\frac{1}{2} mv^2} &=& \frac{1}{N} \left( \frac{1}{2} mv_1^2 + \frac{1}{2} mv_2^2 + \cdots + \frac{1}{2} mv_N^2 \right) = \frac{1}{2} m \overline{v^2} \\
\\
N \cdot \frac{1}{2} m \overline{v^2} &=& n \cdot \frac{3}{2} RT \\
\\
\frac{1}{2} m \overline{v^2} &=& \frac{3}{2} \frac{R}{N_\text{A}} T = \frac{3}{2} kT
\end{eqnarray*}
\overline{\frac{1}{2} mv^2} &=& \frac{1}{N} \left( \frac{1}{2} mv_1^2 + \frac{1}{2} mv_2^2 + \cdots + \frac{1}{2} mv_N^2 \right) = \frac{1}{2} m \overline{v^2}

N \cdot \frac{1}{2} m \overline{v^2} &=& n \cdot \frac{3}{2} RT

\frac{1}{2} m \overline{v^2} &=& \frac{3}{2} \frac{R}{N_\text{A}} T = \frac{3}{2} kT

ボルツマン定数 (Boltzman constant)

$$
k = \frac{R}{N_\text{A}} = \frac{8.31 \ \mbox{J/(mol} \cdot \mbox{K)}}{6.02 \times 10^{23} \ \mbox{1/mol}} \fallingdotseq 1.38 \times 10^{-23} \ \mbox{J/K}
$$

2乗平均速度 (root mean square velocity)

$$
\sqrt{\overline{v^2}} = \sqrt{\frac{3RT}{N_\text{A} m}} = \sqrt{\frac{3RT}{M}}
$$
\sqrt{\overline{v^2}} = \sqrt{\frac{3RT}{N_\text{A} m}} = \sqrt{\frac{3RT}{M}}

気体の内部エネルギー (internal energy of gas)

\begin{eqnarray*}
K &=& \frac{3}{2} nRT \ (\text{単原子分子 monoatomic molecule}) \\
\\
K &=& \frac{3}{2} nRT + nRT = \frac{5}{2} nRT \ (\text{二原子分子 diatomic molecule})
\end{eqnarray*}
K &=& \frac{3}{2} nRT \ (\text{単原子分子 monoatomic molecule})

K &=& \frac{3}{2} nRT + nRT = \frac{5}{2} nRT \ (\text{二原子分子 diatomic molecule})

気体が外部にする仕事

\begin{eqnarray*}
W &=& pS \cdot L \\
\\
&=& p \cdot SL \\
\\
&=& p \cdot (V_2 – V_2) \\
\\
&=& p \Delta V
\end{eqnarray*}
W &=& pS \cdot L

&=& p \cdot SL

&=& p \cdot (V_2 – V_2)

&=& p \Delta V

定積モル比熱 (molar heat at constant volume)

$$
Q_V = n C_V \Delta T
$$
Q_V = n C_V \Delta T

定圧モル比熱 (molar heat at constant pressure)

$$
Q_p = n C_p \Delta T
$$
Q_p = n C_p \Delta T

理想気体の内部エネルギー

\begin{eqnarray*}
\Delta U &=& n C_V \Delta T \\
\\
U &=& n C_V T
\end{eqnarray*}
\Delta U = n C_V \Delta T

U = n C_V T

マイヤーの関係 (Mayer relation)

$$
C_p = C_V +R
$$
C_p = C_V +R

理想気体のモル比熱

\begin{eqnarray*}
C_V = \frac{3}{2} R \ &,& \ C_p = \frac{5}{2} R \ (\text{単原子分子 monoatomic molecule}) \\
\\
C_V = \frac{5}{2} R \ &,& \ C_p = \frac{7}{2} R \ (\text{二原子分子 diatomic molecule})
\end{eqnarray*}
C_V = \frac{3}{2} R \ &,& \ C_p = \frac{5}{2} R \ (\text{単原子分子 monoatomic molecule})

C_V = \frac{5}{2} R \ &,& \ C_p = \frac{7}{2} R \ (\text{二原子分子 diatomic molecule})

熱効率 (thermal efficiency)

$$
e = \frac{W’}{Q_1} = \frac{Q_1 – Q_2}{Q_1}
$$
e = \frac{W’}{Q_1} = \frac{Q_1 – Q_2}{Q_1}