高校物理 波動 ~ 光
光速 (speed of light)
$$
c = 2.99792458 \times 10^8 \ \mbox{m/s} \fallingdotseq 3.00 \times 10^8 \ \mbox{m/s}
$$
c = 2.99792458 \times 10^8 \ \mbox{m/s} \fallingdotseq 3.00 \times 10^8 \ \mbox{m/s}
$$
c = 2.99792458 \times 10^8 \ \mbox{m/s} \fallingdotseq 3.00 \times 10^8 \ \mbox{m/s}
屈折の法則
$$
n_{12} = \frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \frac{\lambda _1}{\lambda _2}
$$
n_{12} = \frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \frac{\lambda _1}{\lambda _2}
$$
n_{12} = \frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \frac{\lambda _1}{\lambda _2}
全反射 (total reflection)
$$
\frac{\sin i_0}{\sin 90 ^\circ} = \sin i_0 = n_{12} = \frac{n_2}{n_1}
$$
\frac{\sin i_0}{\sin 90 ^\circ} = \sin i_0 = n_{12} = \frac{n_2}{n_1}
$$
\frac{\sin i_0}{\sin 90 ^\circ} = \sin i_0 = n_{12} = \frac{n_2}{n_1}
レンズの式
\begin{eqnarray*}
\frac{1}{a} + \frac{1}{b} = \frac{1}{f} \\
\\
m = \left| \frac{b}{a} \right|
\end{eqnarray*}
\frac{1}{a} + \frac{1}{b} = \frac{1}{f} \\
\\
m = \left| \frac{b}{a} \right|
\end{eqnarray*}
\frac{1}{a} + \frac{1}{b} = \frac{1}{f}
m = \left| \frac{b}{a} \right|
ヤングの実験 (Young’s experiment)
\begin{eqnarray*}
\text{明線:}\ |L_1 – L_2| &=& m \lambda = \frac{\lambda}{2} \cdot 2m \ (m=0, 1, 2, \cdots)
\\
\text{暗線:}\ |L_1 – L_2| &=& \left( m + \frac{1}{2} \right) \lambda = \frac{\lambda}{2} \cdot (2m +1) \ (m=0,1,2, \cdots )
\end{eqnarray*}
\text{明線:}\ |L_1 – L_2| &=& m \lambda = \frac{\lambda}{2} \cdot 2m \ (m=0, 1, 2, \cdots)
\\
\text{暗線:}\ |L_1 – L_2| &=& \left( m + \frac{1}{2} \right) \lambda = \frac{\lambda}{2} \cdot (2m +1) \ (m=0,1,2, \cdots )
\end{eqnarray*}
\text{明線:}\ |L_1 – L_2| &=& m \lambda = \frac{\lambda}{2} \cdot 2m \ (m=0, 1, 2, \cdots)
\text{暗線:}\ |L_1 – L_2| &=& \left( m + \frac{1}{2} \right) \lambda = \frac{\lambda}{2} \cdot (2m +1) \ (m=0,1,2, \cdots )
回折格子 (grating)
$$
d \sin \theta = m \lambda = \frac{\lambda}{2} \cdot 2m \ (m=0,1,2, \cdots )
$$
d \sin \theta = m \lambda = \frac{\lambda}{2} \cdot 2m \ (m=0,1,2, \cdots )
$$
d \sin \theta = m \lambda = \frac{\lambda}{2} \cdot 2m \ (m=0,1,2, \cdots )
ディスカッション
コメント一覧
まだ、コメントがありません