初等関数 (elementary function)
初等関数 (elementary function)
三角関数
\tan x &=& \frac{\sin x}{\cos x} \\
\\
\cot x &=& \frac{\cos x}{\sin x} = \frac{1}{\tan x} \\
\\
\sec x &=& \frac{1}{\cos x} \\
\\
\csc x &=& \frac{1}{\sin x} \\
\end{eqnarray*}
\cot x &=& \frac{\cos x}{\sin x} = \frac{1}{\tan x}
\sec x &=& \frac{1}{\cos x}
\csc x &=& \frac{1}{\sin x}
\sin ^2 x + \cos ^2 &=& 1 \\
\\
1 + \tan ^2 x &=& \sec ^2 x
\end{eqnarray*}
1 + \tan ^2 x &=& \sec ^2 x
\sin (-x) &=& -\sin x \\
\\
\cos (-x) &=& \cos x \\
\\
\tan (-x) &=& -\tan x \\
\end{eqnarray*}
\cos (-x) &=& \cos x
\tan (-x) &=& -\tan x
\sin (x+y) &=& \sin x \cos y + \cos x \sin y \\
\\
\sin (x-y) &=& \sin x \cos y – \cos x \sin y \\
\\
\sin (x\pm y) &=& \sin x \cos y \pm \cos x \sin y \\
\end{eqnarray*}
\sin (x-y) &=& \sin x \cos y – \cos x \sin y
\sin (x \pm y) &=& \sin x \cos y \pm \cos x \sin y
\cos (x+y) &=& \cos x \cos y – \sin x \sin y \\
\\
\cos (x-y) &=& \cos x \cos y + \sin x \sin y \\
\\
\cos (x \pm y) &=& \cos x \cos y \mp \sin x \sin y \\
\end{eqnarray*}
\cos (x-y) &=& \cos x \cos y + \sin x \sin y
\cos (x \pm y) &=& \cos x \cos y \mp \sin x \sin y
\tan (x+y) &=& \frac{\tan x + \tan y}{1 – \tan x \tan y} \\
\\
\tan (x-y) &=& \frac{\tan x – \tan y}{1 + \tan x \tan y} \\
\\
\tan (x \pm y) &=& \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y} \\
\end{eqnarray*}
\tan (x-y) &=& \frac{\tan x – \tan y}{1 + \tan x \tan y}
\tan (x \pm y) &=& \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}
\sin x + \sin y &=& 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2} \\
\\
\sin x – \sin y &=& 2 \cos \frac{x+y}{2} \sin \frac{x-y}{2} \\
\end{eqnarray*}
\sin x – \sin y &=& 2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}
\cos x + \cos y &=& 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2} \\
\\
\cos x – \cos y &=& -2 \sin \frac{x+y}{2} \sin \frac{x-y}{2} \\
\end{eqnarray*}
\cos x – \cos y &=& -2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}
\sin ^2 \frac{x}{2} &=& \frac{1}{2} (1 – \cos x) \\
\\
\cos ^2 \frac{x}{2} &=& \frac{1}{2} (1 + \cos x) \\
\\
\tan ^2 \frac{x}{2} &=& \frac{1 – \cos x}{1 + \cos x} \\
\end{eqnarray*}
\cos ^2 \frac{x}{2} &=& \frac{1}{2} (1 + \cos x)
\tan ^2 \frac{x}{2} &=& \frac{1 – \cos x}{1 + \cos x}
\sin x \sin y &=& -\frac{1}{2} \{ \cos (x+y) – \cos (x-y) \} \\
\\
\cos x \cos y &=& \frac{1}{2} \{ \cos (x+y) + \cos (x-y) \} \\
\\
\sin x \cos y &=& \frac{1}{2} \{ \sin (x+y) + \sin (x-y) \} \\
\end{eqnarray*}
\cos x \cos y &=& \frac{1}{2} \{ \cos (x+y) + \cos (x-y) \}
\sin x \cos y &=& \frac{1}{2} \{ \sin (x+y) + \sin (x-y) \}
指数・対数関数
指数の基本法則
a^m \times a^n &=& a^{m+n} \\
\\
a^0 &=& 1 \\
\\
(a^m)^n &=& a^{mn} \\
\\
(ab)^m &=& a^n \cdot b^n \\
\\
a^{-1} &=& \frac{1}{a^n} \\
\\
a^{\frac{1}{n}} &=& ^n\sqrt{a}
\end{eqnarray*}
a^0 &=& 1
(a^m)^n &=& a^{mn}
(ab)^m &=& a^n \cdot b^n
a^{-1} &=& \frac{1}{a^n}
a^{\frac{1}{n}} &=& ^n\sqrt{a}
対数の基本法則
\log _a xy &=& \log _a x + \log _a y \\
\\
\log _a x^u &=& u \log _a x \\
\\
\log _a x &=& \frac{\log _b x}{\log _b a} \\
\\
\log _a 1 &=& 0
\end{eqnarray*}
x &=& e^y \\
\\
\log _e x &=& \log_e e^y \\
\\
\log _e x &=& y \log_e e \\
\\
\log _e x &=& y
\end{eqnarray*}
\log _e x &=& \log_e e^y
\log _e x &=& y \log_e e
\log _e x &=& y
x &=& 10^y \\
\\
\log _{10} x &=& \log_{10} 10^y \\
\\
\log _{10} x &=& y \log_{10} 10 \\
\\
\log _{10} x &=& y
\end{eqnarray*}
\log _{10} x &=& \log_{10} 10^y
\log _{10} x &=& y \log_{10} 10
\log _{10} x &=& y
x &=& a^y \\
\\
\log _a x &=& \log_a a^y \\
\\
\log _a x &=& y \log_a a \\
\\
\log _a x &=& y
\end{eqnarray*}
\log _a x &=& \log_a a^y
\log _a x &=& y \log_a a
\log _a x &=& y
\log _e x = \frac{\log _{10} x}{\log _{10} e}
$$
\log (xy) &=& \log x + \log y \\
\\
\log \frac{x}{y} &=& \log x – \log y \\
\\
\log x^{\alpha} &=& \alpha \log x \\
\\
\frac{d}{dx} \log x &=& \frac{1}{x}
\end{eqnarray*}
\log \frac{x}{y} &=& \log x – \log y
\log x^{\alpha} &=& \alpha \log x
\frac{d}{dx} \log x &=& \frac{1}{x}
双曲線正弦関数・双曲線余弦関数
\sinh x &=& \frac{e^x – e^{-x}}{2} \\
\\
\cosh x &=& \frac{e^x + e^{-x}}{2}
\end{eqnarray*}
\cosh x &=& \frac{e^x + e^{-x}}{2}
ディスカッション
コメント一覧
まだ、コメントがありません