初等関数 (elementary function)
三角関数
tanx=sinxcosxcotx=cosxsinx=1tanxsecx=1cosxcscx=1sinx
\tan x &=& \frac{\sin x}{\cos x}
\cot x &=& \frac{\cos x}{\sin x} = \frac{1}{\tan x}
\sec x &=& \frac{1}{\cos x}
\csc x &=& \frac{1}{\sin x}
sin2x+cos2=11+tan2x=sec2x
\sin ^2 x + \cos ^2 &=& 1
1 + \tan ^2 x &=& \sec ^2 x
sin(−x)=−sinxcos(−x)=cosxtan(−x)=−tanx
\sin (-x) &=& -\sin x
\cos (-x) &=& \cos x
\tan (-x) &=& -\tan x
sin(x+y)=sinxcosy+cosxsinysin(x−y)=sinxcosy–cosxsinysin(x±y)=sinxcosy±cosxsiny
\sin (x+y) &=& \sin x \cos y + \cos x \sin y
\sin (x-y) &=& \sin x \cos y – \cos x \sin y
\sin (x \pm y) &=& \sin x \cos y \pm \cos x \sin y
cos(x+y)=cosxcosy–sinxsinycos(x−y)=cosxcosy+sinxsinycos(x±y)=cosxcosy∓sinxsiny
\cos (x+y) &=& \cos x \cos y – \sin x \sin y
\cos (x-y) &=& \cos x \cos y + \sin x \sin y
\cos (x \pm y) &=& \cos x \cos y \mp \sin x \sin y
tan(x+y)=tanx+tany1–tanxtanytan(x−y)=tanx–tany1+tanxtanytan(x±y)=tanx±tany1∓tanxtany
\tan (x+y) &=& \frac{\tan x + \tan y}{1 – \tan x \tan y}
\tan (x-y) &=& \frac{\tan x – \tan y}{1 + \tan x \tan y}
\tan (x \pm y) &=& \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}
sinx+siny=2sinx+y2cosx−y2sinx–siny=2cosx+y2sinx−y2
\sin x + \sin y &=& 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}
\sin x – \sin y &=& 2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}
cosx+cosy=2cosx+y2cosx−y2cosx–cosy=−2sinx+y2sinx−y2
\cos x + \cos y &=& 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}
\cos x – \cos y &=& -2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}
sin2x2=12(1–cosx)cos2x2=12(1+cosx)tan2x2=1–cosx1+cosx
\sin ^2 \frac{x}{2} &=& \frac{1}{2} (1 – \cos x)
\cos ^2 \frac{x}{2} &=& \frac{1}{2} (1 + \cos x)
\tan ^2 \frac{x}{2} &=& \frac{1 – \cos x}{1 + \cos x}
sinxsiny=−12{cos(x+y)–cos(x−y)}cosxcosy=12{cos(x+y)+cos(x−y)}sinxcosy=12{sin(x+y)+sin(x−y)}
\sin x \sin y &=& -\frac{1}{2} \{ \cos (x+y) – \cos (x-y) \}
\cos x \cos y &=& \frac{1}{2} \{ \cos (x+y) + \cos (x-y) \}
\sin x \cos y &=& \frac{1}{2} \{ \sin (x+y) + \sin (x-y) \}
指数・対数関数
指数の基本法則
am×an=am+na0=1(am)n=amn(ab)m=an⋅bna−1=1ana1n=n√a
a^m \times a^n &=& a^{m+n}
a^0 &=& 1
(a^m)^n &=& a^{mn}
(ab)^m &=& a^n \cdot b^n
a^{-1} &=& \frac{1}{a^n}
a^{\frac{1}{n}} &=& ^n\sqrt{a}
対数の基本法則
logaxy=logax+logaylogaxu=ulogaxlogax=logbxlogbaloga1=0
x=eylogex=logeeylogex=ylogeelogex=y
x &=& e^y
\log _e x &=& \log_e e^y
\log _e x &=& y \log_e e
\log _e x &=& y
x=10ylog10x=log1010ylog10x=ylog1010log10x=y
x &=& 10^y
\log _{10} x &=& \log_{10} 10^y
\log _{10} x &=& y \log_{10} 10
\log _{10} x &=& y
x=aylogax=logaaylogax=ylogaalogax=y
x &=& a^y
\log _a x &=& \log_a a^y
\log _a x &=& y \log_a a
\log _a x &=& y
logex=log10xlog10e
\log _e x = \frac{\log _{10} x}{\log _{10} e}
log(xy)=logx+logylogxy=logx–logylogxα=αlogxddxlogx=1x
\log (xy) &=& \log x + \log y
\log \frac{x}{y} &=& \log x – \log y
\log x^{\alpha} &=& \alpha \log x
\frac{d}{dx} \log x &=& \frac{1}{x}
双曲線正弦関数・双曲線余弦関数
sinhx=ex–e−x2coshx=ex+e−x2
\sinh x &=& \frac{e^x – e^{-x}}{2}
\cosh x &=& \frac{e^x + e^{-x}}{2}
ディスカッション
コメント一覧
まだ、コメントがありません